Correlating Viscosity with Temperature and Other Properties

Charles H. Fisher*

Chemistry Department, Roanoke College, Salem, Virginia 24153

ABSTRACT: Simple viscosity equations based on linearities $[1/\eta^e \text{ (or } \phi^e) \text{ vs. } T; T/\eta^e \text{ vs. } T \text{ and } \phi^e \text{ vs. } P; (\eta, \text{ viscosity; } \phi, \text{ fluidity; } T, \text{ temperature; and } P, \text{ any property or property function linear with } T, \text{ such as, density, refractivity, and surface tension }] are given for glycerol, triglycerides, glyceride oils,$ *n*-fatty acids, esters, an alcohol, and an amine.*JAOCS 75*, 1229–1232 (1998).

KEY WORDS: Density, esters, *n*-fatty acids, refractivity, surface tension, triglycerides, viscosity.

Published viscosities, plentiful (1-16) for one or a few temperatures (such as those in Table 1), have limited value when viscosities are needed at temperatures other than those published ones. Proposed equations to calculate viscosities at various desired temperatures are relatively or highly complex (13-17). Equation 1, for example, was recently used to correlate viscosity with temperature for 355 compounds (16). Although equations less complex than Equation 1 are available (13,15), there is still the need for simple, even if empirical, expressions to correlate η with temperature:

$$\log \eta = A + B/T + CT + DT^2$$
[1]

where A, B, C, and D are regression coefficients, and T is temperature in K.

The principal purpose of the present work was to enhance the usefulness of published viscosities by developing simple equations, preferably nonlogarithmic, to correlate viscosity with temperature and other properties. The advantages of such equations include ease of use, space economy (much information in little space), new data estimated by interpolation or prudent extrapolation, identification of grossly inaccurate (nonfitting) data, and evaluation of data quality (accurate data give high correlation coefficients). Compounds of special interest in the oil and fat community were selected (from the many studied successfully) for presentation in the present report.

Equations 2–5 are some of the simple equations developed to correlate viscosity (η) with temperature (t, °C or T, K) and other properties (P):

$$\eta = b + m / (t + k)$$
^[2]

$$\phi^k = b + m t \tag{3}$$

$$T, \mathbf{K}/\mathbf{\eta}^k = b + m t \tag{4}$$

$$\eta^k = b + m P \tag{5}$$

where *b* is intercept, *m* is slope, *k* is adjustable parameter, ϕ is fluidity (or 1/ η), and *P* is property.

The *k* values in Equation 3 and in the Table 2 and Table 3 equations can be used as negative exponents (-k) to calculate viscosities directly. Equations 3 and 4, used in developing the Tables 2–4 correlations, have the advantage their viscosity functions (ϕ^k and *TK*/ η^k) are linear with properties and property functions that are temperature-linear.

Equation 3 can be transformed into Equation 6, convenient viscosity calculator:

$$\eta = [1/m/(b/m + t)]^{1/k} \text{ or } \eta = [m'/(t + k)]^{1/k}$$
[6]

All alkyl groups (R) used in this paper are normal. Viscosities, mPa S, are treated as being equal to centipoise viscosities, cP (5,13).

TABLE 1
Viscosities of Compounds at Different Temperatures ^a

<i>t</i> (°C)	Acetic acid	Bu acetate	Et propanoate	Butane nitrile	Octanoic acid	1-Hexanol	$BuNH_2$	(Et) ₃ N
0		1.00	0.691				0.830	0.455
25	1.06	0.685	0.501	0.553	5.02	4.58	0.574	0.347
50	0.786	0.500	0.380	0.418	2.66	2.27	0.409	0.273
75	0.599	0.383	0.299	0.330	1.65	1.27	0.298	0.221
100	0.464	0.305	0.242	0.268	1.15	0.781		

^aReferences 3 and 5 provide viscosities for these and many other compounds at 0, 25, 50, 75, and 100°C.

*Address correspondence at Chemistry Department, Roanoke College, 221 College Lane, Salem, VA 24153. E-mail: fisher@roanoke.edu

/			Adj.			
	Total	Temperature	parameter,	Intercept,		Correlation
Ester	carbons	range	k	b	Slope, m	coefficient, r
Me ester	7	10/80	0.70	0.8483	0.01163	0.9999,83
Me ester	8	10/80	0.64	0.7318	0.009936	0.9999,35
Me ester	9	10/80	0.67	0.5892	0.01012	0.999,82
Me ester	11	10/80	0.60	0.4748	0.008180	0.999999,56
Me ester	13	10/80	0.58	0.3687	0.007322	0.99999,16
Et ester	8	35/95	0.60	0.8004	0.009342	0.999999,08
Et ester	10	35/95	0.88	0.3930	0.01275	0.999,59
Et ester	12	35/95	0.54	0.4936	0.007102	0.9999,82
Et ester	14	35/95	0.48	0.4391	0.006071	0.999999,25
Et ester	16	35/95	0.65	0.2152	0.006940	0.9999,76
Et ester	18	35/95	0.50	0.2764	0.005639	0.999999,55
Et ester	20	35/95	0.49	0.2406	0.005301	0.9999,69
R acetate	8	35/95	0.60	0.7338	0.09286	0.9999,86
R acetate	10	35/95	0.58	0.5407	0.008279	0.999999,83
R acetate	12	35/95	0.40	0.5536	0.005600	0.999999,61
R acetate	14	35/95	0.55	0.3272	0.006813	0.999999,05
R acetate	16	35/95	0.52	0.2803	0.006147	0.9999,74
R acetate	18	35/95	0.55	0.1997	0.005927	0.99999,46
R acetate	20	35/95	0.52	0.1808	0.005484	0.999999,85

TABLE 2 *n*-Alkyl *n*-Alkanoates: Correlations Between Fluidity ($\phi = 1/\eta$) and Temperature (*t*, °C)^{*a*,*b*}

^aMe ester data (1); Et ester and R acetate data (2).

^{*b*}Correlation equation: $\phi^k = b + mt$, °C; where *k* is adjustable parameter, *b* is intercept, and *m* is slope.

TABLE 3
Correlations Between Fluidity ($\phi = 1/\eta$) and Temperature (t , °C) ^{a,b,c}

		Adjustment			
	Temperature	parameter,			Correlation
	range	k	Intercept, b	Slope, m	coefficient, r
Me oleate	30/90	0.52	0.2712	0.005578	0.999999,84
Et oleate	30/90	0.50	0.2767	0.005422	0.9999999,83
Pr oleate	30/90	0.49	0.2626	0.005258	0.99999999,77
Bu oleate	30/90	0.58	0.1791	0.005296	0.999999999,41
Me oleate ^c	20/70	0.59	0.2081	0.005156	0.99999999,61
Me linoleate ^c	20/70	0.63	0.2340	0.005228	1.000
Me linoleate ^c	20/70	0.65	0.2545	0.005211	0.99999999,75
Me erucate ^c	20/70	0.52	0.1799	0.004451	0.99999999,46
Decyl thiopalmitate	45/90	0.52	0.1092	0.004041	0.99999,36
Triacetin	0/100	0.42	0.1408	0.006406	0.9999999,52
Tributyrin	0/100	0.49	0.2018	0.005694	0.9999999,26
Tricaprin	45/85	0.47	0.2144	0.002752	0.99,88
Trilaurin	45/85	0.45	0.0666	0.004048	0.99999,17
Trimyristin	60/85	0.43	0.0638	0.003780	0.99999999,71
Tripalmitin	70/85	0.41	0.06467	0.003570	0.999999,89
Tristearin	75/85	0.45	0.02178	0.003296	0.99999999,07
Coconut oil	38/110	0.44	0.07733	0.004056	0.99999,58
Glycerol	25/100	0.22	0.1112	0.004424	0.9999,67
Dodecanol	25/80	0.32	0.2623	0.005635	0.9999,12
Oleic acid	24/110	0.39	0.1691	0.004127	0.999,70
Lauric acid	46/80	0.34	0.2964	0.004484	0.9999,64
Stearic acid	82/121	0.58	-0.03634	0.004286	0.999,61
Erucic acid	38/110	0.39	0.1134	0.003788	0.999,75
Decyl NH ₂	20/80	0.60	0.4527	0.008984	0.99999,65

^aPrincipal data sources (3–15).

^{*b*}Correlation equation: $\phi^k = b + m t$, °C, where ϕ is fluidity, *k* is adjustable parameter, *b* is intercept, and *m* is slope. ^{*c*}Equations are based on kinematic viscosities at 20, 40, and 70°C.

TABLE 4
Correlations Between Viscosity (η , cP) and Temperatures (t , °C) ^{a,b}

	Temperature			Correlation
	span, °C	Intercept, b	Slope, m	coefficient, r
Et laurate	35/95	191.8	1.879	0.9999,71
Dodecyl acetate	35/95	184.0	1.902	0.99999,44
Me oleate	30/90	166.7	1.803	0.9999999,43
Trilaurin	45/85	93.15	1.742	0.999999,35
Heptyl thiolaurate	30/90	152.6	1.702	0.9999,90
Nonanoic acid	24/110	154.8	1.869	0.9999,34
Oleic acid	60/90	110.3	1.715	0.9999,81
Decylamine	20/80	211.7	2.009	0.99999,44
Corn oil	24/110	95.90	1.599	0.999,90
Soybean oil	24/110	94.98	1.597	0.9999,15

^aPrincipal data sources (2,9,11,14).

^{*b*}Correlation equation: $T_{c}K/\eta^{0.2} = b + m t_{c} \circ C$; where *b* is intercept, and *m* is slope; the exponent 0.2 is adequate but not necessarily the best.

TABLE 5	
Et Laurate: Correlations Between Fluidity ($\phi = 1/\eta$) and Other Properties (P) ^{<i>a</i>}	5

Temperature					
span,					Correlation
°C	У	X	Intercept, b	Slope, m	coefficient, r
35/95	d	t,°C	0.8781	-0.0007853	-0.99999,86
20/40	N _D	t,°C	0.4395	-0.000400	-1.000
10/100	γ	t,°C	30.05	-0.08628	
35/95	φ ^{0.48}	d	7.238	-7.744	-0.9999999,56
35/95	$\phi^{0.48}$	N_D	7.110	-15.18	-0.99999,25
35/95	φ ^{0.48}	γ	2.553	-0.07032	-0.9999,88

^aSurface tensions (18), other data (2).

^bCorrelation equation: y = b + mx, where d is density; N_D (or $n_D - 1$) is refractivity; γ is surface tension, and $\phi^{0.48}$ is fluidity with exponent 0.48.

The equations in Tables 2 and 3 correlate fluidities (ϕ^k or $1/\eta^k$) with temperature, those in Table 4 correlate *T* K/ η^k with temperature. The ϕ^k vs. *t* correlation is valid for both absolute (poises) and kinematic viscosities (Stokes) (Table 3). Equations 3 and 4, used satisfactorily with compounds of many types, appear to be widely applicable. The Table 5 equations correlate ethyl laurate fluidities with densities, refractivities, and surface tensions.

ACKNOWLEDGMENTS

Vernon R. Miller, Jr. and Vernon C. Miller are thanked for the computer program used in equation development.

REFERENCES

- Liew, K.Y., C.E. Seng, and L.L. Oh, Viscosities and Densities of the Methyl Esters of Some n-Alkanoic Acids, J. Am. Oil Chem. Soc. 69:155–158 (1992).
- 2. Shigley, J.W., C.W. Bonhorst, C.C. Liang, P.M. Althouse, and H.O. Triebold, Physical Characterization of a) a Series of Ethyl

Esters and b) a Series of Ethanoate Esters, *Ibid.* 32:213–215 (1955).

- 3. Lide, D.R., *Handbook of Organic Solvents*, CRC Press, Boca Raton, 1995.
- 4. Lide, D.R., *Basic Laboratory and Industrial Chemicals*, CRC Press, Boca Raton, 1993.
- 5. Lide, D.R., *CRC Handbook of Chemistry and Physics*, 75th edn., CRC Press, Boca Raton, 1994.
- Noureddini, H., B.C. Teoh, and L.D. Clements, Viscosities of Vegetable Oils and Fatty Acids, J. Am. Oil Chem. Soc. 69:1189–1191 (1992).
- Liew, K.Y., C.E. Seng, and E.K. Lau, Viscosities of Some Long-Chain Fatty Acids and Their Relationship with Chainlength, *Ibid.* 68:488–492 (1991).
- Liew, K.Y., C.E. Seng, and B.H. Ng., Viscosities of Long-Chain n-Alcohols from 15 to 80°C, J. Solution Chem. 22:1033–1040 (1993).
- Liew, K.Y., C.E. Seng, and C.G. Lee, Viscosities of *n*-Alkylamines from 15 to 80°C, *Ibid.* 23:1293–1300 (1994).
- Singleton, W.S., *Fatty Acids, Part 1*, edited by K.S. Markley, Interscience Publishers, Inc., New York, 1960.
- Singleton, W.S., *Fatty Acids*, *Part 5*, edited by K.S. Markley, Interscience Publishers, Inc., New York, 1968.
- 12. Small, D.M., *Physical Chemistry of Lipids*, Plenum Press, New York, 1986.

- 13. Riddick, J.A., W.B. Bunger, and T.K. Sakano, *Organic Solvents, 4th Edn.*, John Wiley & Sons, New York, 1986.
- 14. Swern, D. (ed.) Bailey's Industrial Oil and Fat Products, 4th Edition, Vol. 1, John Wiley & Sons, New York, 1979.
- Reid, R.C., J.M. Prausnitz, and B.E. Poling, *Properties of Gases and Liquids*, 4th edn., McGraw-Hill Book Co., New York, 1987.
- Yaws, C.L., Calculate Viscosities for 355 Liquids, *Chem. Eng.*: 119–128 (1996).
- Valeri, D., and A.J.A. Meirelles, Viscosities of Fatty Acids, Triglycerides, and Their Binary Mixtures, *J. Am. Oil Chem. Soc.* 74, 1221–1226 (1997).
- 18. Jasper, J.J., The Surface Tension of Pure Liquid Compounds, J. Phys. Chem. Ref. Data 1:841–1010 (1972).

[Received June 30, 1997; accepted June 18, 1998]